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An equation, derived by Phillips (1984) to  describe the variation of a wind-wave 
spectrum in the presence of a current, is shown to have an exact solution. For certain 
choices of current, the results are shown to simplify even further. 

1. Introduction 
Bottom topography and internal waves induce current variations at the ocean 

surface. These in turn modulate any surface wave field already present, created for 
example by the wind. When an active radar probes the surface, the radiation is 
returned by several types of scattering mechanism, dependent on the angle of the 
incidence q5, measured from the vertical. For q5 away from grazing and away from 
normal incidence, Bragg reflection gives a return signal from free waves of 
wavenumber k satisfying the condition 

k = 2krsinq5, (1 .1)  

where k,  is the wavenumber of the incident electromagnetic radiation. Thus for L- 
band radar with a frequency around 1 GHz and q5 around 60°, the surface waves 
responsible for the backscatter are in the decameter range (0.1-1 m). The effect of 
currents on these short waves is the subject of this paper. Recent work in this field 
can be found in either Komen & Oost (1989) or the full reports of the Synthetic 
Aperture Radar Internal Wave Signature Experiment (SARSEX) (1988). 

Phillips (1984) has derived an equation which describes the patterns of spectral 
variation due to the presence of a current. In  this paper, we show that the equation 
has an exact solution which can be further simplified for certain analytic choices of 
current distribution. The equation and its derivation are outlined in $2. The solution 
procedure is given in $3  and two different choices of current are considered in $4. 

2. Phillips’ equation 
The wave dynamics is described by an equation for the action spectral density 

N ( k ) ,  where k is the wavenumber, which is related to the surface displacement 
spectrum Y ( k )  by 

N ( k )  = g Y ( k )  = 
fl 

where (T = (gk); is the intrinsic frequency of free gravity waves. 
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The equation for N(k) is given by 

--N(k) d = -+(c,+ i3N U)-V-N= C 
dt at 

(2.2) 

along rays, where cg = Cb/ak is the group velocity, U is the surface current velocity 
and C is a sum of source terms attributed to such mechanisms as wind input, 
nonlinear wave-wave interactions and dissipation by wave breaking or generation of 
parasitic capillaries. 

We also have the equation of conservation of wave crests, or kinematical 
conservation equation, 

(2.3) 
ak 
- + V ( a + k .  U) = 0 
at 

together with the condition V A k = 0 .  (2.4) 

Phillips (1984) argues that, for short waves in the range 0.1-1 m, an equilibrium 
(that is dN/dt = 0) can be achieved in a region dcvoid of currents by a balance 
between wind input and dissipation, with nonlinear wave-wave interactions being 
negligible. He uses Plant's (1982) expression for the wind input and argues for a 
functional dependence of the dissipation on the local spectral density. 

The presence of a current induced either by bottom topography or by internal 
waves then perturbs that equilibrium. Phillips (1984) derives an equation which 
describes these changes. It turns out that a better representation is not in terms of 
the action N(k) but the non-dimensional degree of saturation B defined by 

(2.5) B = g-lk%(k) = k4Y(k).  

The equation is obtained from our equations (2.1)-(2.5) together with the relevant 
form for the source terms C. It is given by (Phillips 1984, equation (4.1)) 

where m = 0.04 cos 0, 0 the angle between k and the wind, u* the friction velocity, 
c = ( g / k ) i  the phase speed of the short waves and n a number between 3 and 5. B, is 
the value of B at equilibrium. The first term on the right represents wind input and 
the second represents dissipation. The wavenumber k is regarded as fixed because of 
the Bragg scattering condition ( 1 . 1 ) .  

For current variations of magnitude U, which occur over a lengthscale L and with 

u= U,.mlL)  = U 0 . m  (2.7) 

then the steady form of (2.6) can be conveniently written in terms ofb(4)  = BIB,, the 
local relative degree of saturation, as 

ab 9 U k . k .  afi U, aft  ab 
c j a t j a k i  [ + :j j(<) - + - 23 b - - k .  - - = 2xm S{ 1 - bfl--l} 6.  (2.8) 1 af;, 2 c k2 a 

The sensing parameter S is defined by 
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It represents the ratio of the time taken for a wave packet to cross the current 
variation to the growth time of waves by wind. If S is large, b is small and vice versa. 

If we takef= (f, 0 , O )  and 5 = ( f , 0 ,  0) to be in the same direction and assume no 
dependence of b on k, the final equation then becomes 

db  9 u ,  df 
d t  2 c df 
-+- - --b = 2nmS(1- bn-l) b. (2.10) 

Phillips (1984) chose a particular form for f ( f )  and integrated (2.10) numerically. 
For S = 0, he showed that (2.10) has the exact solution 

subject to the condition that b = 1 when there is no current (i.e. .f = 0). 
we shall show in the next section that (2.10) has an 

3. Exact solution 
Let us rewrite (2.10) in the form 

where 

and 

Equation (3.1) is called Bernoulli's equation (Davis 
generalization of Riccati's equation, for which n = 2. 

(2.11) 

exact solition for s =I= 0. 

(3.3) 

1962, p .  49). It is a natural 
In  fact for n = 3,  the case 

integrated by Phillips, it  is called Abel's equation (see for example Davis 1962, 
chapter 3,  section 9).  It is solved exactly as follows. Substitute 

into (3.1), to give 
1 dz 1 dp A,  A,  - 

pz2df zp2 at  pz pnzn' 

Let us now choose, once and for all 

and hence (3.7) 

where p( f , )  = p,. Equation (3.5) then simplifies to become 
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and hence (3.9) 

where z ( & )  = 2,. 

We now combine (3.4), (3.7) and (3.9) to  give the exact solution of (3.1): 

b+P[ s A1(7)d7] 
5, (3.10) b(E)  = lln-1 [ 1 + (n- 1 )  b:-l[c~n(c)exp [ (n-1) [ ~ l ( V ) d q ] d ~ ]  

where b(&) = b,. 
The form of this equation is similar to that found by Hughes (1978). He derived 

a widely used equation to describe perturbations to the action N ( k )  in the presence 
of a current. He took n = 2, that is Riccati’s equation. His notion of quiescence, viz. 
l /N(k ) ,  coincides with the form of the substitution needed to solve the case n = 2. 
For the case of arbitrary n, a more general type of substitution, our (3.4), is needed. 

Clearly when S = 0, An(c) = 0 and hence 

(3.11) 

The integration can be done exactly by noting that f’(7)dT = df and hence, since 
b = 1 when f = 0, we recover (2.11). We conclude this section by noting that (3.10) 
can also be obtained from (3.1) by the substitution 

b ( E )  = [dW 
and taking p = l / ( l - n ) .  

(3.12) 

4. Different forms of current function f(6) 

produce an exact form for part of the expression for b ( t ) ,  our (3.10). 
It is possible to go further and, for certain analytic choices of current function f(0, 

In general, from (3.2) and (3.3), 

This expression provides us with an important element of (3.10). Phillips (1984) chose 
a current of the form 

f(6) = +( 1 + tanh 6 ) .  (4.2) 

In  this case the integral on the right-hand side of (4.1) can be found explicitly from 
tables (Gradshteyn & Ryzhik 1965) for c > 0 to be 

(4.3) 

(c + U,) 5- U, log, sinh [[+ tanh-’(c + Uo/Uo)]  
C(C+2UO) (UO -= --b) - - 

(4.4) 
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and hence 

-4nmSU,K/(e+ZU,) 

x { cosh [t+ tanh-' (&)I} [c + U, + U, tanh (U,  > -$) 

-4nmSU,K/(e+Z U,) 

x { sinh [ 6 + tanh-' r%)]} 
where K = 1 for the numerator, K = n- 1 for the denominator. Therefore 

[c+ U,+ U, tanh61-k (U,  < -$), ( 4 . 6 )  

Equations ( 4 . 3 ) - ( 4 . 7 )  provide the complete solution for b(6)  when f(6) is given 

Another choice of f(6) would be 
by (4.2). Only one numerical integration is needed. 

f(6) = ;( 1 + sin 2x6). 
In  this case, for c > 0, 

(4.9) 

x [c + U, + U, sin 
= exp { 4mSK ()i tan-' [ (c+ U,) tan-'xt+ U, 

c+2u0 [c(c + ZU,)]~ 

(U, > -$c) ( 4 . 1 1 )  

(U, < -$) ( 4 . 1 2 )  
Therefore 
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Equations (4.9)-(4.13) are the complete solution for b(5) whenf(5) is given by (4.8). 
Care must be exercised when evaluating b ( ( )  for f (5 )  negative. 

5. Summary 
We have shown that Phillips (1984) equation (2.10) for the local relative degree of 

saturation b(5) has an exact solution given by equation (3.10). For certain choices of 
current function f((),  the formula for b ( ( )  can be simplified even further to produce 
an expression which requires only one numerical integration (e.g. (4.7) or (4.13)). 

The author carried out this work whilst holding the CEGB Research Fellowship in 
Applied Mathematics at St Catherine’s College, Oxford. 
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